

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

AN IR STUDY OF TRIMETHYL PHOSPHITE ADSORBED ON NaY ZEOLITE

Fatih Ucun^a; Ekrem Çiçek^a; Semiha Bahçeli^a

^a Department of Physics, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey

Online publication date: 13 June 2002

To cite this Article Ucun, Fatih , Çiçek, Ekrem and Bahçeli, Semiha(2002) 'AN IR STUDY OF TRIMETHYL PHOSPHITE ADSORBED ON NaY ZEOLITE', *Spectroscopy Letters*, 35: 2, 239 — 243

To link to this Article: DOI: 10.1081/SL-120003809

URL: <http://dx.doi.org/10.1081/SL-120003809>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AN IR STUDY OF TRIMETHYL PHOSPHITE ADSORBED ON NaY ZEOLITE

Fatih Ucun, Ekrem Çiçek, and Semiha Bahçeli*

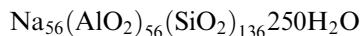
Department of Physics, Faculty of Arts and Sciences,
Suleyman Demirel University, 32260 Isparta, Turkey

ABSTRACT

Infrared spectroscopy has been used to investigate the adsorption of trimethyl phosphite (TMP) on the NaY zeolite. The obtained spectrum indicates that at room temperature TMP reacts rapidly with the non-acidic (silanol) hydroxyls on the surface of the zeolite to give SiOCH_3 as a chemisorbed product and liquid dimethyl phosphite (DMP).

Key Words: Infrared spectroscopy; Trimethyl phosphate; TMP; NaY zeolite

*Corresponding author. E-mail: bahceli@tet.sdu.edu.tr


INTRODUCTION

The vibrational spectra of the bulk trimethyl phosphite (TMP) as an organophorous compound have been reported by Nyquist^{1,2}. Recently, the magic angle spinning nuclear magnetic resonance (MAS NMR) and infrared (IR) studies of trimethyl phosphite adsorbed on silica were presented by Gay et al³. They have shown that at room temperature TMP reacted rapidly with surface silanol groups and gave SiOCH_3 as a chemisorbed product and liquid dimethyl phosphite (DMP).

On the other hand, it is a well-known fact that an understanding of the catalytic properties of zeolites is based on a knowledge of the adsorption characteristics of reactant, intermediate and product molecules^{4,5}. For this purpose, in our work we have used the NaY zeolite as an adsorbent of the TMP.

EXPERIMENTAL

The substrate NaY sample having a general unit cell content of⁵

was purchased from the Aldrich. The Si/Al ratio of the sample is 3. Trimethyl phosphite (Sigma, 97%) was used without any purification. The preparation of the sample for infrared spectroscopy examination is as follows. The NaY zeolite was activated at 623 K for 4 h, and then 1 g of zeolite was placed into 20 cm³ of liquid TMP. After stirring and storing for 24 h, the mixture was filtered and dried at room temperature. Sample was compressed into self-supporting pellet and introduced into an IR cell equipped with KBr windows. IR spectra were recorded at room justified temperature on a Perkin-Elmer BX FT-IR (Fourier Transformed Infrared) spectrometer with a resolution of 4 cm⁻¹ in the transmission mode.

RESULTS AND DISCUSSION

IR spectra are given in Fig. 1. Upper and lower lines in the Fig. 1 show the IR spectra of TMP adsorbed on the NaY zeolite and pure NaY zeolite, respectively. The obtained data from IR spectrum are summarized in Table 1. In IR spectrum, the bands at 2858 cm⁻¹ and 2966 cm⁻¹ are mainly

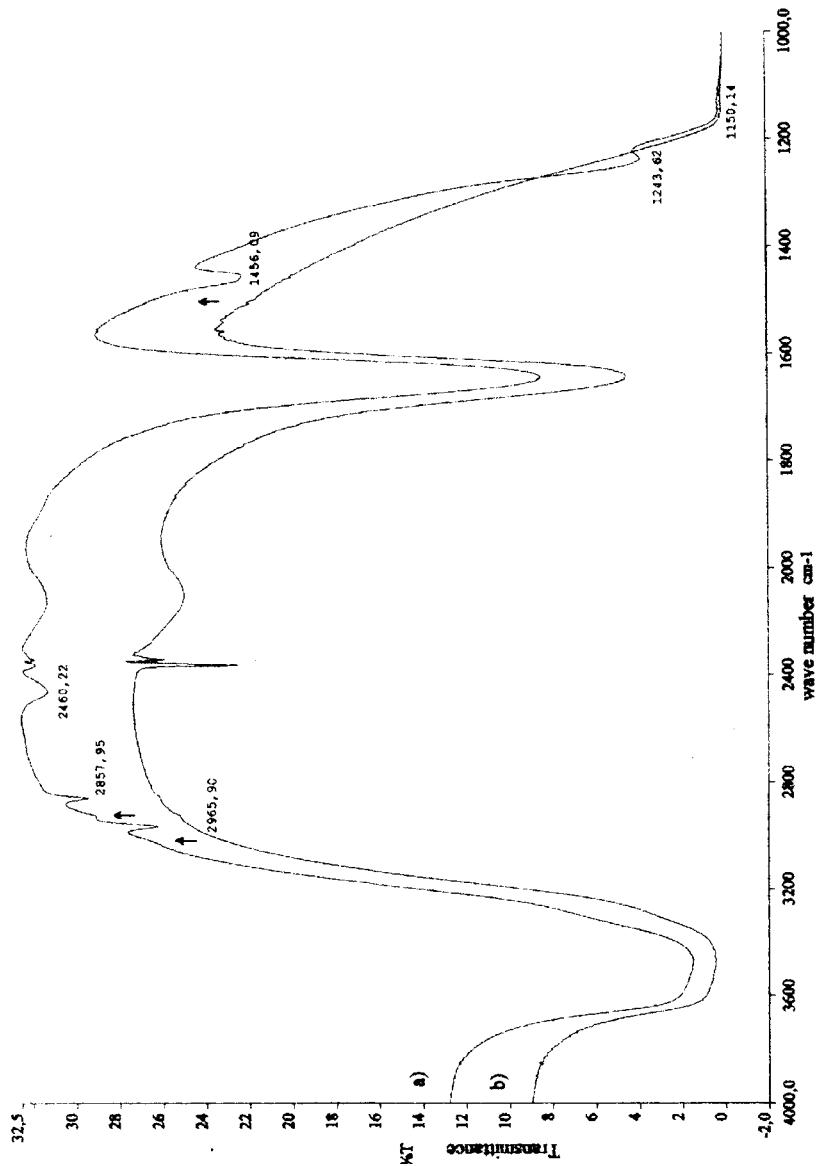
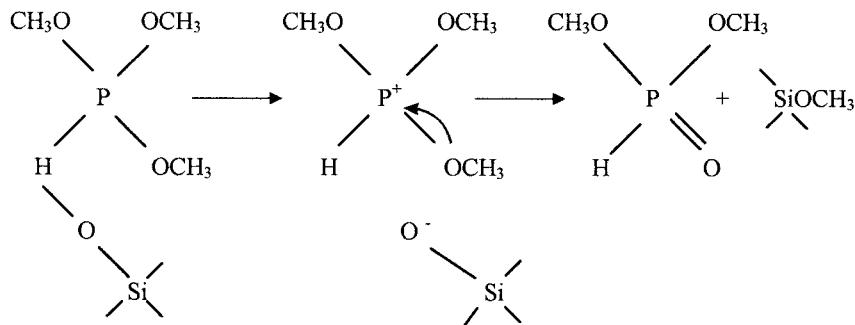


Figure 1. a) IR spectrum of TMP adsorbed on the NaY zeolite, b) IR spectrum of pure NaY zeolite at room temperature.

Table 1. Vibration Modes and Frequencies of Bulk TMP and TMP Adsorbed on NaY Zeolite

Frequencies (cm ⁻¹) bulk TMP ¹	Assignment	Frequencies (cm ⁻¹) for TMP Adsorbed on NaY	Assignment
2990	$\nu_{\text{asym}}\text{CH}_3$	2858 (m)	$\nu_{\text{asym}}\text{CH}_3$ (DMP)
2949 and 2939	$\nu_{\text{sym}}\text{CH}_3$	2966 (m)	$\nu_{\text{sym}}\text{CH}_3$ (DMP)
1459	$\delta_{\text{asym}}\text{CH}_3$	2460 (b)	P-H streching
1436	$\delta_{\text{sym}}\text{CH}_3$	1456 (s) 1244 (w) 1150 (w)	$\delta_{\text{asym}}\text{CH}_3$ (DMP) P=O streching P-O streching


m = medium, b = broad, s = strong, w = weak.

the CH_3 (methyl) streching modes of DMP and the strong band at 1456 cm^{-1} can be assigned as the CH_3 bending mode⁶. The broad band at 2460 cm^{-1} is the P-H streching mode of DMP since a band between 2400 cm^{-1} and 2700 cm^{-1} can be indicative of the presence of the species contained P-H bond². Furthermore, very weak bands which are denoted with the arrows at the interval 2800 – 3000 cm^{-1} and 1470 cm^{-1} in Fig. 1 can identify the existence of SiOCH_3 called chemisorption product on NaY zeolite⁷. The other two bands at 1244 cm^{-1} and 1150 cm^{-1} are the P=O and P-O streching vibration modes of DMP, respectively^{6,8}.

As we know that, the Bronsted acidity of zeolites arises from the presence of accessible hydroxyl groups associated with framework aluminium and this kind of hydroxyl groups is called “structural or bridging hydroxyls”. Another hydroxyl groups are formed on the surface of zeolite crystallites and crystal defects sites. This sort of hydroxyl groups is called the non-acidic or silanol hydroxyls. These are well-known from other silicates and silica itself. The results of IR studies confirm that the surface silanol groups contribute to the adsorption of TMP on the NaY zeolite. The reaction between TMP and the non-acidic hydroxyl (silanol) can be shown as

or in an explicit chemical structure form

As a result we conclude that at room temperature TMP reacts rapidly with SiOH groups on the surface of the NaY zeolite and gives chemisorbed SiOCH₃ and H-bonded DMP.

ACKNOWLEDGMENTS

This work was supported by the Research Fund of Suleyman Demirel University. Project Number 364. Authors would like to thank the Center of Research on Pure and Applied Sciences, Suleyman Demirel University for the technical assistance.

REFERENCES

1. Nyquist, R.A. *Spectrochimica Acta* **1966**, *22*, 1315.
2. Nyquist, R.A. *Spectrochimica Acta* **1969**, *25A*, 47.
3. Gay Ian, D.; Mc Farlan, A.J.; Morrow, B.A. *J. Phys. Chem.* **1991**, *95*, 1360.
4. Coughlan, B.; Carroll, W.M.; O. Molley, P.J.; Nunan, J. *J. Chem. Soc. Faraday Trans.* **1981**, *177*, 3037.
5. Mumton, F.A. *Mineral Soc. Amer. Course Notes* **1977**, *4*, 221.
6. Hannah, R.W.; Swinehart, J.S. *Experiments in Techniques of Infrared Spectroscopy*, Perkin Elmer Corporation, 1974.
7. Morrow, B.A. *J. Chem. Soc. Faraday Trans. A* **1974**, *70*, 1527.
8. Mc Farlan, A.J.; Morrow, B.A. *J. Phys. Chem.* **1991**, *95*, 1360.

Received June 1, 2001

Accepted December 20, 2001